Search results

Search for "pulsed laser" in Full Text gives 96 result(s) in Beilstein Journal of Nanotechnology.

Spatial mapping of photovoltage and light-induced displacement of on-chip coupled piezo/photodiodes by Kelvin probe force microscopy under modulated illumination

  • Zeinab Eftekhari,
  • Nasim Rezaei,
  • Hidde Stokkel,
  • Jian-Yao Zheng,
  • Andrea Cerreta,
  • Ilka Hermes,
  • Minh Nguyen,
  • Guus Rijnders and
  • Rebecca Saive

Beilstein J. Nanotechnol. 2023, 14, 1059–1067, doi:10.3762/bjnano.14.87

Graphical Abstract
  • × 2.8) and (1.4 × 1.2) mm2 labeled as A, B, C, and D, respectively. In the process of fabrication, a 100 nm thick layer of LNO as the bottom electrode was first deposited, using pulsed laser deposition (PLD) technique, on a single crystal silicon wafer. Then, an 850 nm lead barium zirconia titanate
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2023

SERS performance of GaN/Ag substrates fabricated by Ag coating of GaN platforms

  • Magdalena A. Zając,
  • Bogusław Budner,
  • Malwina Liszewska,
  • Bartosz Bartosewicz,
  • Łukasz Gutowski,
  • Jan L. Weyher and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 552–564, doi:10.3762/bjnano.14.46

Graphical Abstract
  • substrates using pulsed laser deposition (PLD) and magnetron sputtering (MS) and their evaluation as potential substrates for surface-enhanced Raman spectroscopy (SERS) are reported. Ag layers of comparable thicknesses were deposited using PLD and MS on nanostructured GaN platforms. All fabricated SERS
  • : GaN/Ag; magnetron sputtering; nanofabrication; pulsed laser deposition; SERS substrates; surface-enhanced Raman spectroscopy (SERS); Introduction Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive and specific technique with multiplexing capabilities [1][2][3][4]. It is considered for
  • physical vapor deposition (PVD) methods have been tested to replace MS in coating GaN platforms with plasmonic metals. Pulsed laser deposition (PLD) is an interesting and still not fully explored alternative for the fabrication of SERS substrates [37][38]. Hence, our studies reported herein aimed to
PDF
Album
Full Research Paper
Published 03 May 2023

Observation of multiple bulk bound states in the continuum modes in a photonic crystal cavity

  • Rui Chen,
  • Yi Zheng,
  • Xingyu Huang,
  • Qiaoling Lin,
  • Chaochao Ye,
  • Meng Xiong,
  • Martijn Wubs,
  • Yungui Ma,
  • Minhao Pu and
  • Sanshui Xiao

Beilstein J. Nanotechnol. 2023, 14, 544–551, doi:10.3762/bjnano.14.45

Graphical Abstract
  • high-power pulsed laser is applied to obtain stronger signals, thus making the resonance feature more obvious in the spectrum. However, high intensity of direct reflection caused by the pulsed laser could not be totally filtered out with the PBS and, therefore, a pronounced background intensity profile
PDF
Album
Full Research Paper
Published 27 Apr 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2023

A novel approach to pulsed laser deposition of platinum catalyst on carbon particles for use in polymer electrolyte membrane fuel cells

  • Bogusław Budner,
  • Wojciech Tokarz,
  • Sławomir Dyjak,
  • Andrzej Czerwiński,
  • Bartosz Bartosewicz and
  • Bartłomiej Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 190–204, doi:10.3762/bjnano.14.19

Graphical Abstract
  • carbon substrate and the chemical synthesis of PtNPs during catalyst fabrication. Platinum was deposited on carbon particles at room temperature using a pulsed laser deposition (PLD) system equipped with an ArF excimer laser (λ = 193 nm). The uniform deposition of PtNPs on carbon supports was achieved
  • [27]. Direct deposition of PtNPs can be attained by the use of various physical vapor deposition techniques such as magnetron sputtering [28], sputtering [29], e-beam evaporation [30], dual ion-beam assisted deposition [31], and pulsed laser deposition (PLD) [27][32][33]. Previously, PLD has been used
  • strong exothermic redox reaction (self-propagating high-temperature synthesis, SHS) between pulverized anhydrous calcium formate and magnesium powder (all reagents purchased from Sigma-Aldrich, United States). Pulsed laser deposition of platinum on the carbon supports The platinum catalyst was deposited
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2023

Electrical and optical enhancement of ITO/Mo bilayer thin films via laser annealing

  • Abdelbaki Hacini,
  • Ahmad Hadi Ali,
  • Nurul Nadia Adnan and
  • Nafarizal Nayan

Beilstein J. Nanotechnol. 2022, 13, 1589–1595, doi:10.3762/bjnano.13.133

Graphical Abstract
  • Microelectronic and Nanotechnology Shamsuddin Research Centre (MiNT-SRC), Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia 10.3762/bjnano.13.133 Abstract ITO/Mo bilayer thin films were sputtered on n-type silicon and glass substrates and annealed with a Nd:YAG pulsed laser. The
  • plasma cleaner. In the IM structure, the thickness of ITO was 125 nm while the thickness of Mo was 10 nm. The thickness was controlled by two quartz crystal balances integrated within the chamber. After deposition, the bilayer thin film was treated using a Nd:YAG pulsed laser with a wavelength of 1064 nm
  • sputtering and, subsequently, investigated. The films were annealed using a Nd:YAG pulsed laser with different energies. The inclusion of thin Mo films and annealing at 120 mJ improved the structural, morphological, optical, and electrical properties. The XRD results show a good crystallinity for the
PDF
Album
Full Research Paper
Published 28 Dec 2022

Revealing local structural properties of an atomically thin MoSe2 surface using optical microscopy

  • Lin Pan,
  • Peng Miao,
  • Anke Horneber,
  • Alfred J. Meixner,
  • Pierre-Michel Adam and
  • Dai Zhang

Beilstein J. Nanotechnol. 2022, 13, 572–581, doi:10.3762/bjnano.13.49

Graphical Abstract
  • pulsed laser as the excitation source. The real size of the MoSe2 flake is indicated by the dashed white triangle. We find that the SHG signal is barely visible at the border of the MoSe2 flake compared to the center of the MoSe2 flake. Furthermore, the bright-field optical image reveals also some small
  • using a custom-built confocal microscope assisted with a parabolic mirror. The schematic diagram of the microscope is exhibited in Supporting Information File 1, Figure S4. A femtosecond pulsed laser (pro NIR_02508, Toptica Photonic) at an excitation wavelength of 780 nm (repetition frequency: 40 MHz
  • femtosecond pulsed laser (89.8 fs, 40 MHz, 780 nm, linear polarization). The excitation power used in the SHG map in (d) is 5.80 mW. (e) SHG spectra collected from CuPc/MoSe2. The inset shows the integrated SHG intensity as a function of the excitation power. (f) and (h) show optical images of CuPc/MoSe2
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • ordered hybrid nanostructured substrates, ranging from more expensive and laborious ones, such as pulsed laser deposition or hydrothermal growth, followed by sputtering processes [31] or electron beam lithography to more cost-efficient and simple ones, such as photochemical deposition of metallic NPs or a
  • ) [12] was carried out as well. Chou et al. employed a simple and rapid method, namely pulsed laser-induced photolysis to develop Au NPs on the surface of ZnO nanorods fabricated by the sol–gel method (Figure 2c,d) [38]. Various irradiation times were tested, indicating that a short irradiation time was
  • photochemical reduction [32], pulsed laser-induced photolysis [38], or controlled decoration with Ag NPs using an electroless plating technique [44]. Photochemical synthesis permits the control of nucleation and growth rate without using organic additives. Xu et al. employed laser irradiation of ZnO nanorods in
PDF
Album
Review
Published 27 May 2022

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • a lower value of fractal dimension is more effective in sensing NO2 gas and lowers the optimum operating temperature. Chen et al. used pulsed laser deposition for growing different SnO2 thin films by varying the substrate temperature. The obtained films exhibited fractal features [43]. In another
PDF
Album
Supp Info
Review
Published 09 Nov 2021

9.1% efficient zinc oxide/silicon solar cells on a 50 μm thick Si absorber

  • Rafal Pietruszka,
  • Bartlomiej S. Witkowski,
  • Monika Ozga,
  • Katarzyna Gwozdz,
  • Ewa Placzek-Popko and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2021, 12, 766–774, doi:10.3762/bjnano.12.60

Graphical Abstract
  • environmentally friendly solar cells are cells based on zinc oxide (ZnO). ZnO thin films can be obtained using many technologies, including molecular beam epitaxy, RF magnetron sputtering, pulsed laser deposition, chemical vapor deposition, and atomic layer deposition (ALD) [3]. ALD attracts the attention of many
PDF
Album
Full Research Paper
Published 21 Jul 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
PDF
Album
Review
Published 02 Jul 2021

Structural and optical characteristics determined by the sputtering deposition conditions of oxide thin films

  • Petronela Prepelita,
  • Florin Garoi and
  • Valentin Craciun

Beilstein J. Nanotechnol. 2021, 12, 354–365, doi:10.3762/bjnano.12.29

Graphical Abstract
  • dielectric properties (e.g., SiO2 and ZnO) exhibit a dependence of the electrical resistance with temperature [22][23]. SiO2 and ZnO films are obtained by various deposition techniques, such as matrix-assisted pulsed laser evaporation (MAPLE) [24][25], spin coating of sol–gel precursor solutions [26], radio
PDF
Album
Full Research Paper
Published 19 Apr 2021

Bulk chemical composition contrast from attractive forces in AFM force spectroscopy

  • Dorothee Silbernagl,
  • Media Ghasem Zadeh Khorasani,
  • Natalia Cano Murillo,
  • Anna Maria Elert and
  • Heinz Sturm

Beilstein J. Nanotechnol. 2021, 12, 58–71, doi:10.3762/bjnano.12.5

Graphical Abstract
  • structural or a chemical change, a complementary AFM-IR method was used. This hybrid setup is comprised of an AFM and a tunable pulsed laser source focused on the sample volume underneath the AFM tip. The absorption at distinct wavelengths is measured by detecting the thermal expansion of the material by the
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2021

High-responsivity hybrid α-Ag2S/Si photodetector prepared by pulsed laser ablation in liquid

  • Raid A. Ismail,
  • Hanan A. Rawdhan and
  • Duha S. Ahmed

Beilstein J. Nanotechnol. 2020, 11, 1596–1607, doi:10.3762/bjnano.11.142

Graphical Abstract
  • fabricated by a chemical method. They show that the Ag2S quantum dots (QDs) planted on the surface of Si create impurity states in the Si bandgap. In pulsed laser ablation, the interaction between laser and material particles leads to severe particle aggregation and broad particle size distributions via
  • melting/fragmentation [19]. In the present work, we demonstrate a novel technique to prepare monodisperse Ag2S NPs using CTAB surfactant-assisted pulsed laser ablation of Ag2S NPs in a thiourea (Tu) solution. Moreover, a high-performance hybrid Ag2S/Si photodetector was fabricated. Experimental Colloidal
  • taking into account the transmittance of the ablation liquid at 1064 nm. The ablation time for each sample was set to 20 min. Figure 1 shows a schematic of the pulsed laser ablation system used in this work. A rotating motor was used to help prevent the aggregation and agglomeration of particles during
PDF
Album
Full Research Paper
Published 21 Oct 2020

Optically and electrically driven nanoantennas

  • Monika Fleischer,
  • Dai Zhang and
  • Alfred J. Meixner

Beilstein J. Nanotechnol. 2020, 11, 1542–1545, doi:10.3762/bjnano.11.136

Graphical Abstract
  • deposition [41], or on dense silver island films created by pulsed laser deposition [42] or physical vapor deposition [43]. In [44], individual plasmonic nanotags are prepared by coating gold nanoparticle clusters with Raman reporters. This work explores the minimum number of tags required for obtaining a
PDF
Editorial
Published 07 Oct 2020

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • subsections. Physical methods Examples of physical methods used to synthesize NPs are the evaporation/condensation method, magnetron sputtering, mechanochemical processing (MCP), microwave-thermal method, photoreduction process, and pulsed laser ablation, among others. The evaporation/condensation method
  • irradiation time. For example, while Tan et al. [31] obtained spherical silver nanoparticles, Zhou et al. [32] obtained plate-like triangles. Another method used is the pulsed laser ablation technique which is used to synthesize colloidal solutions of Ag [33], Au [34], MgO [35], and ZnO [36] NPs, among others
  • , via a high-power pulsed laser beam that hits a target of the material of choice. In this context, several physical methods have been used to synthesize nanoparticles, and the most relevant ones, along with the typical resulting particle sizes, are listed in Table 1. Depending on the preparation
PDF
Album
Review
Published 25 Sep 2020

Highly sensitive detection of estradiol by a SERS sensor based on TiO2 covered with gold nanoparticles

  • Andrea Brognara,
  • Ili F. Mohamad Ali Nasri,
  • Beatrice R. Bricchi,
  • Andrea Li Bassi,
  • Caroline Gauchotte-Lindsay,
  • Matteo Ghidelli and
  • Nathalie Lidgi-Guigui

Beilstein J. Nanotechnol. 2020, 11, 1026–1035, doi:10.3762/bjnano.11.87

Graphical Abstract
  • . Specifically, we demonstrate that the TiO2 background pressure during pulsed laser deposition and the annealing conditions offer control over the formation of Au nanoparticles with different sizes, shapes and distributions, yielding a versatile sensor. We have exploited the surface for the detection of 17β
  • template for the growth of Au NPs (in the following the samples will be referred as TiO2/Au). Both TiO2 film and Au NPs were synthetized by vapor phase deposition techniques (involving pulsed laser deposition and thermal evaporation) avoiding the use of solvents, while accurately tuning the morphology and
  • TiO2/Au nanostructured surfaces TiO2/Au substrates were synthetized using a two-step deposition. First, a nanostructured TiO2 film was synthetized by pulsed laser deposition (PLD). Then, a Au NP layer was deposited on top by thermal evaporation of Au followed by solid-state dewetting to induce the
PDF
Album
Full Research Paper
Published 14 Jul 2020

Band tail state related photoluminescence and photoresponse of ZnMgO solid solution nanostructured films

  • Vadim Morari,
  • Aida Pantazi,
  • Nicolai Curmei,
  • Vitalie Postolache,
  • Emil V. Rusu,
  • Marius Enachescu,
  • Ion M. Tiginyanu and
  • Veaceslav V. Ursaki

Beilstein J. Nanotechnol. 2020, 11, 899–910, doi:10.3762/bjnano.11.75

Graphical Abstract
  • radio-frequency plasma-assisted molecular beam epitaxy (RF-MBE) [2][7][10][11], DC [12][13] and RF [1][3][6] magnetron sputtering, pulsed laser deposition (PLD) [14][15], plasma-enhanced atomic layer deposition (PE-ALD) [16], chemical vapor deposition (CVD) [17], metal–organic chemical vapor deposition
PDF
Album
Full Research Paper
Published 12 Jun 2020

Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface

  • Stefania Castelletto,
  • Faraz A. Inam,
  • Shin-ichiro Sato and
  • Alberto Boretti

Beilstein J. Nanotechnol. 2020, 11, 740–769, doi:10.3762/bjnano.11.61

Graphical Abstract
PDF
Album
Review
Published 08 May 2020

Observation of unexpected uniaxial magnetic anisotropy in La2/3Sr1/3MnO3 films by a BaTiO3 overlayer in an artificial multiferroic bilayer

  • John E. Ordóñez,
  • Lorena Marín,
  • Luis A. Rodríguez,
  • Pedro A. Algarabel,
  • José A. Pardo,
  • Roger Guzmán,
  • Luis Morellón,
  • César Magén,
  • Etienne Snoeck,
  • María E. Gómez and
  • Manuel R. Ibarra

Beilstein J. Nanotechnol. 2020, 11, 651–661, doi:10.3762/bjnano.11.51

Graphical Abstract
  • using the pulsed-laser deposition technique. We analyzed the films structurally through X-ray reciprocal space maps and high-angle annular dark field microscopy, and magnetically via thermal demagnetization curves and in-plane magnetization versus applied magnetic field loops at room temperature. Our
  • epitaxially have grown BTO/LSMO bilayers on SrTiO3 (STO), (LaAlO3)0.3(Sr2TaAlO6)0.7 (LSAT) and LaAlO3 (LAO) single-crystal substrates where we choose for all of them the pseudocubic (001) direction perpendicular the substrate surface. We have grown the samples by pulsed-laser deposition and systematically
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2020

Deterministic placement of ultra-bright near-infrared color centers in arrays of silicon carbide micropillars

  • Stefania Castelletto,
  • Abdul Salam Al Atem,
  • Faraz Ahmed Inam,
  • Hans Jürgen von Bardeleben,
  • Sophie Hameau,
  • Ahmed Fahad Almutairi,
  • Gérard Guillot,
  • Shin-ichiro Sato,
  • Alberto Boretti and
  • Jean Marie Bluet

Beilstein J. Nanotechnol. 2019, 10, 2383–2395, doi:10.3762/bjnano.10.229

Graphical Abstract
  • , and dead time set at 2 μs) to measure the NCVSi emission (Figure 4). In the first confocal microscopy setup a variable wavelength super continuum NKT Photonics, Fianium WhiteLase pulsed laser was used for sample illumination at 730 nm. The laser has a pulse width of 30 ps and a repetition rate
  • ± 50 nm were used to collect the emission signal from NCVSi. PL is measured in the IR using 90% of the emission from the color centers using a Spectrometer Princeton with a PyLoN-IR camera cooled with liquid nitrogen to −110 °C. A femtosesond 80 MHz pulsed Laser Insight x3 Spectra-Physics at 980 nm was
PDF
Album
Full Research Paper
Published 05 Dec 2019

Pulsed laser synthesis of highly active Ag–Rh and Ag–Pt antenna–reactor-type plasmonic catalysts

  • Kenneth A. Kane and
  • Massimo F. Bertino

Beilstein J. Nanotechnol. 2019, 10, 1958–1963, doi:10.3762/bjnano.10.192

Graphical Abstract
  • a “forced plasmon” that efficiently generates hot charge carriers, transforming the catalytic NP into a photocatalytic NP. Here, the facile synthesis of highly active Ag–Rh and Ag–Pt heterostructures for the reduction of 4-nitrophenol through pulsed laser ablation is reported. The synthesis method
  • . [18] and Zhang and co-workers [19]. The aim of the present study is to lay the foundation for future work and illuminate the potential efficacy of pulsed laser ablation as an effective method for the production of multicomponent plasmonic catalysts. The reported method possesses several inherent
  • benefits: (1) the absence of surfactants and ligands; (2) a simple, robust, and quick two-step method production; (3) bulk targets of the constituent metals as the only necessary ingredients. Experimental The synthesis of the monometallic colloids was carried out using a EKSPLA SL312G/SH/TH pulsed laser
PDF
Album
Supp Info
Letter
Published 26 Sep 2019

Rapid thermal annealing for high-quality ITO thin films deposited by radio-frequency magnetron sputtering

  • Petronela Prepelita,
  • Ionel Stavarache,
  • Doina Craciun,
  • Florin Garoi,
  • Catalin Negrila,
  • Beatrice Gabriela Sbarcea and
  • Valentin Craciun

Beilstein J. Nanotechnol. 2019, 10, 1511–1522, doi:10.3762/bjnano.10.149

Graphical Abstract
  • sputtering [20][21][22], and pulsed laser deposition (PLD) [23]. Various changes in the optical, electrical and structural qualities are known to occur depending on the type of deposition and thermal treatment process [24][25][26][27][28][29][30] applied to the ITO films. For instance, an improvement in the
PDF
Album
Full Research Paper
Published 25 Jul 2019

Revisiting semicontinuous silver films as surface-enhanced Raman spectroscopy substrates

  • Malwina Liszewska,
  • Bogusław Budner,
  • Małgorzata Norek,
  • Bartłomiej J. Jankiewicz and
  • Piotr Nyga

Beilstein J. Nanotechnol. 2019, 10, 1048–1055, doi:10.3762/bjnano.10.105

Graphical Abstract
  • . SSFs can be fabricated on large area planar substrates using electron beam (or thermal) PVD techniques, and thus are simple to prepare and rather inexpensive. Island type structures can be also fabricated using pulsed laser deposition [42]. The SSFs form when 5–10 nm (mass thickness corresponding to
PDF
Album
Full Research Paper
Published 15 May 2019

Fabrication of silver nanoisland films by pulsed laser deposition for surface-enhanced Raman spectroscopy

  • Bogusław Budner,
  • Mariusz Kuźma,
  • Barbara Nasiłowska,
  • Bartosz Bartosewicz,
  • Malwina Liszewska and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2019, 10, 882–893, doi:10.3762/bjnano.10.89

Graphical Abstract
  • and characterization of silver nanoisland films (SNIFs) using pulsed laser deposition (PLD) and the evaluation of these films as potential surface-enhanced Raman scattering (SERS) substrates are reported. The SNIFs with thicknesses in a range of 4.7 ± 0.2 nm to 143.2 ± 0.2 nm were deposited under
  • . Keywords: nanofabrication; pulsed laser deposition; SERS substrates; silver nanoisland films; surface-enhanced Raman spectroscopy; X-ray photoelectron spectroscopy; Introduction In recent years, SERS has been intensively investigated as a sensing tool in many applications [1][2][3]. Of particular interest
  • fabricated NPs can be controlled very well [13]. One of the less commonly used physical methods for the fabrication of SERS active gold and silver nanoisland films is pulsed laser deposition (PLD) [19][20][21][22][23][24][25]. In PLD, the materials are deposited on a substrate through laser ablation from a
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2019
Other Beilstein-Institut Open Science Activities